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Residual stress effects in sharp contact cracking 
Part 1 Indentation fracture mechanics 
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A study is made of residual stress effects in the mechanics of median fracture in sharp 
indenter contact. Starting with a simplistic treatment of the elastic-plastic indentation 
field, the problem is conveniently resolved into two separable parts, involving reversible 
(elastic) and irreversible (residual) components. The assumption of geometrical similarity 
in the residual field about the deformation zone, later backed up by stress birefringence 
measurements, leads to a stress intensity factor for median crack propagation containing 
the elastic and residual parts as the sum of two terms. The resulting formulation for 
equilibrium fracture shows some differences in the crack response during the loading and 
unloading half-cycles. By imposing certain stress states on the specimen surface during 
indentation the residual component of the field may actually cause the median crack to 
continue in downward extension as the indenter is withdrawn, a response which is espec- 
ially amenable to experimental investigation. Direct observations of median crack evo- 
lution in soda-lime glass confirm this and other essential predictions of the fracture 
mechanics theory. The contribution of the residual component to the crack growth is 
found to be by no means secondary in importance to that of the elastic component. 

1. Introduction 
Indentation fracture techniques are proving to be 
useful in the characterization of brittle surfaces 
[1]. A well-controlled contact test offers the 
prospect of highly reproducible deformation- 
fracture geometry, together with simplicity and 
economy in data accumulation. It is now estab- 
lished that there are two basic types of indentation 
fracture pattern, depending on whether the con- 
tact is essentially elastic ("blunt" indenters) or 
plastic ("sharp" indenters) [1, 2]. Of these, the 
sharp indenter configuration is the more severe, 
and is therefore especially pertinent to engineering 
properties such as strength, wear and erosion. 

The true nature of the stress field about a sharp 
indenter contact is, of  course, elastic-plastic [2]. 
Within this field a system of penny-like cracks 
evolves once some threshold is reached in the 
loading, namely "median" (or "radial") cracks, on 
symmetry planes containing the load axis and 
principal impression diagonals, and "lateral" 

cracks, on a saucer-shaped surface centred near the 
impression base. The first attempts at a fracture 
mechanics analysis of the sharp indenter system 
[3, 4] focussed on the median cracks, noting that 
in soda-lime glass these cracks formed primarily 
during indenter loading, and were presumably 
being driven predominantly by elastic components 
of the field. Lateral cracks, on the other hand, 
formed entirely during unloading, indicating a 
driving force in association with residual stresses 
about the irreversible deformation zone. Thus 
whilst the fully propagating median crack could 
be treated to a first approximation in terms of a 
centre-loaded half-penny configuration [4], 
analysis of lateral crack development appears to 
require a more detailed solution to a complex 
elastic-plastic stress problem. Consequently, pro- 
perties more closely allied to median rather than 
lateral crack generation have proved simpler to 
model in terms of indentation fracture mech- 
anics. The relatively sound position of present-day 
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theories of strength degradation as compared to 
surface erosion in particle contact situations is a 
notable manifestation of this state of affairs [2]. 

Although the basic form of the fracture mech- 
anics relations for centre-loaded penny-like cracks 
appears to be well satisfied by the median flaws, 
there is a growing body of evidence that even in 
this case residual stress effects are far from insig- 
nificant. Direct observation of the fracture evolu- 
tion during one complete indentation cycle in 
glass shows that the ultimate radial symmetry of 
the medians is not achieved uniformly: whereas 
the bulk of the downward extension into the 
material does indeed occur on loading, a con- 
siderable amount of  the sideways extension at the 
surface occurs as the indenter is being withdrawn 
[4]. Also, where sharp indenters are used to 
produce a dominant starting flaw for controlled 
strength testing, critical stress intensity factors 
evaluated from measurements of the crack size 
tend to be somewhat less than those determined 
by more conventional means (e.g. double cantilever 
or double torsion specimens), typically by ~ 30% 
[5, 6]. Such evidence is indicative of a residual 
opening force on the indentation cracks, con- 
sistent with the fact well known to glaziers that 
secondary fractures induced by a scribing tool 
continue to grow long after the cutting operation 
has been completed. Petrovic etal. [5] demon- 
strated the central role of the plastic deformation 
zone about the hardness impression as a source of 
the residual stress field: In a series of tests on 
ceramic specimens in which the surfaces were 
either progressively polished or annealed, a 
strength recovery commensurate with the true 
critical stress intensity factor was observed. 

Our aim in this study is to quantify the residual 
stress effect in sharp indenter deformation- 
fracture mechanics, and to investigate the impli- 
cations of these effects in the modelling of contact 
related properties for brittle solids. The potential 
importance of the phenomenon to be discussed in 
some depth here has already been demonstrated in 
a preliminary report published elsewhere [7]. In 
Part 1 of the study a fracture mechanics framework 
is established for describing the evolution of 
median fracture under various indentation loading 
conditions. Vickers indentation tests on soda-lime 
glass provide a convenient model system for 
experimental analysis. Part 2 will concern itself 
with the incorporation of residual stress terms in 
strength degradation analysis. 

2. Fracture mechanics relations for median 
cracks in an elastic-plastic field 

2.1. Stress intensity factors 
A complete description of fracture evolution 
within an elastic-plastic indentation field would 
begin with a detailed analysis of stress distri- 
butions along the prospective crack paths [8]. 
Such an analysis poses formidable obstacles, 
however, with the need to accommodate non- 
linear constitutive relations for the material under 
consideration, appropriate boundary conditions 
at the indenter-specimen interface, and the 
presence of free surface outside the contact area 
(improperly neglected in commonly adopted 
"expanding cavity" models). Recent attempts at 
stress computations along these lines serve to 
highlight both the extreme complexity and the 
sensitivity to starting assumptions inherent in the 
general indentation field [9, 10]. It is accordingly 
in the interest of  providing insight without com- 
plication that we adopt a somewhat phenomeno- 
logical approach to the question of residual stress 
effects in this work, resorting to detailed stress 
field considerations only where it is necessary to 
account for certain anomalous features in the 
crack patterns. 

For this purpose we consider the field which 
drives the indentation cracks to consist of well- 
defined, separable components, and make use of 
the property of linear superposition of stress 
intensity factors [8] to determine the net mech- 
anical force on the fracture system. Suppose first 
the field arises solely from an indentation load 
P, as in Fig. la. Then the stress tensor at any 
point in the indented solid may be written as 
oep, denoting an elastic-plastic quantity. Upon 
removal of the load, Fig. lb,  a component or 
persists at the point under consideration. Now 
in the event that a negligible amount of reversed 
plasticity occurs during the unloading half-cycle, 
it is clear that reloading the indenter to P will 
restore the configuration of Fig. la, and in so 
doing will contribute a purely elastic stress com- 
ponent oe to the field ~ [ 11 ]. That is, the elastic- 
plastic stress field of a fully loaded indenter 
may be considered as the superposition of the 
residual field in the unloaded solid and the field 
of an ideally elastic contact: 

%~, = o~ + %. ( 1 )  

In this approximation the requirements for a 
fracture mechanics solution to the basic median 

2002 



(o) 
P 

_.vi Pe + Pr 

J 
(b) Pr 

Cc) 

L 

Figure 1 Median crack configuration, idealised here for 
Vickers indentation geometry. Side views: (a) normal 
indenter load P generates median opening forces Pe 
(elastic field component) and Pr (residual field compo- 
nent); (b) load removal eliminates only the Pe component. 
Lateral cracks (not shown) generate during stage (b). 
Surface view (c) depicts classical radial crack pattern. 
Surface stresses (not shown) may also drive the cracks. 

crack problem reduce to finding appropriate 
expressions for the corresponding stress intensity 
factors Ke and K~. 

The case of  a perfectly elastic indentation field 
has been dealt with in full elsewhere [4]. For the 
fully propagating median crack of ideal half 
penny geometry (Fig. I), radius c, it is readily 
shown that K~ 'XPe/c3/2, where P~ is the effective 
wedge opening component of force delivered by 
the indenter at the crack centre. Geometrical 
considerations verify that P~ cx p, so 

Ke = X d T d  '2, (2) 
with the dimensionless indenter/specimen con- 
stant Xe some function of indenter angles, contact 
friction, and free surface effects. 

An analogous formulation may be derived for 
the residual stress intensity factor. We assume that 
incompatibility of reversible and irreversible 
regions beneath the unloading indenter generates 
an effective wedge opening force Pr at the defor- 
mation zone (Fig. 1) [6]. This force scales with 
the intensity of the residual stress field and the 
cross-sectional area of the deformation zone over 
which it acts; or, residual stress intensity cc Pr/a 2 ' 

where a is a characteristic linear dimension of the 
hardness impression. For indentations which show 
geometrical similarity with load, the residual 
stress must also be expected to scale with the 
hardness, i.e. residual stress intensity cxH cc p/a  2 

(mean indentation pressure). Thus we conclude 
Pr ccp. If  we now write Kr cc pr/c3/2(a ,~ c) corres- 
ponding to penny-like cracks with constant force 
loading at their centres, we obtain 

Kr = XrP/C 3/2 , (3) 

where X~ is another dimensionless indenter- 
specimen constant. 

The similarity of  Equations 2 and 3 enables us 
to write down a single expression of the form 
xP/c  3/2 for the stress intensity factor corres- 
ponding to median crack propagation at full 
loading, with X = Xe + Xr. This is the form which 
has been used without qualification in earlier 
strength degradation studies. The fact that X has 
been shown experimentally to be invariable with 
load or crack size for specific indentation systems 
[4] would appear to provide sufficient justifi- 
cation for assuming Xe and Xr to be similarly 
constant. The important distinction to be made 
here is that the residual term will continue to 
operate on completion of the indentation process, 
and must therefore contribute to the stress inten- 
sity factor in a subsequent strength test. Part 2 
investigates the full implications of this point. 
Meanwhile, we shall simply note that a detailed 
fracture mechanics analysis of  the median crack 
system requires both Xe and X, to be specified; 
and, in view of the assumptions implicit in the 
derivations of  Equations 2 and 3, that these terms 
are most properly to be regarded as adjustable 
parameters to be determined empirically for any 
given indenter-specimen system. 

Agents other than the indentation load may 
contribute to the driving force for median frac- 
ture. One example which we shall be considering 
later in this study is that of a surface stress a s 
acting uniformly over the crack area. The appro- 
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priate stress intensity factor takes the form [8] 

K s = %(Trac) uz, (4) 

where f2 is a dimensionless crack geometry term. 
There are two ways of special interest here in 
which such a stress may arise: (1) as a residual 
surface compression OR via a tempering process, 
such that 

os = -- OR (5a) 

remains constant throughout subsequent indent- 
ation; (2) as a flexurat compression during in- 
dentation of a non-rigidly supported plate, whence 
the stress scales with load according to 

as = -- @P/P*,  (5b) 

o~- being the maximum compression attained at 
the maximum load P*. 

2.2. Equ i l ib r ium crack relat ions 
Let us now investigate the growth evolution of 
median cracks under equilibrium conditions. 
Such conditions may be expressed simply by the 
relation K = Kc, where K is the net stress intensity 
factor and K c is a critical value identifiable with 
material "toughness". For the general case where 
both indentation load and surface stress operate 
the equilibrium condition becomes 

K = K e + K s + K s  = Kc.  (6) 

Because of the intrinsic irreversibility in the 
elastic-plastic indentation field we might expect 
significant differences in the equilibrium fracture 
configurations at the same load point during the 
positive and negative half-cycles of the contact 
sequence. Accordingly, using Equations 2 to 4 
to write Equation 6 in expanded form, we con- 
sider the loading and unloading relations sep- 
arately: 

xeP/c 3/2 + X~el9 3/2 + osOr~2c) '/2 = Kc 

xeP/c 3/2 + XrP*lc 3/2 + O s ( ' f f ~ c )  1/2 = K e 

The irreversibility of the residual term once the 
maximum load P* is attained is noted in Equ- 
ation 7b. 

Let us now investigate the crack response as 
a function of indentation load in Equation 7 
for each of three surface states, adopting an 
asterisk/dagger notation to distinguish between 
maximum load/complete unload equilibrium con- 
figurations: 
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2.2. 1. Stress-free surfaces 
We take e s = 0, and differentiate Equation 7a to 
obtain 

6c/6P = 2(Xe + X~)/3Kec a/2 (P f )  

for the loading half-cycle. Thus 6c > 0 for all 
6P > 0, i.e. the crack size increases monotonically 
with load. At maximum loading, P = P * ,  the 
corresponding crack size is 

c* = [(• + X~)e*IKc] 2/3. (8) 

Similarly, differentiation of Equation 7b gives 

6c'/6P = 2Xe/3Kc cu2 (P$) 

for the unloading half-cycle. Again, 6c < 0  for 
all 6P < O, i.e. in order to maintain equilibrium 
the crack must contract monotonically with 
decreasing load. At complete unloading, P = 0, 
the final equilibrium crack size is 

c t = (Xre*/Ke) 2/3. (9) 

Dividing Equation 9 into Equation 8 then gives 

c*/c t = (1 + Xe/Xr) 2/3, (10) 

so that, if it were possible to establish an ideal 
equilibrium crack cycle, one could determine 
the relative values of Xe and Xr from straight- 
forward crack measurements. 

2. 2. 2. Tempered surfaces 
Inserting Equation 5a into 7, and differentiating, 
we get 

6c/6P = 2(Xe + Xr)/[3Kcc u2 

+ 4OR(Trg2)V2C] (PI)  

6c/6P = 2Xe/[3gec 1/~ + 40R(lr~2)U2c] (p$) 

Thus we find that, as for stress-free surfaces, the 
(p f )  cracks are predicted to extend monotonically on 
(7a) loading, and likewise to contract on unloading, 
(P4.) although at diminishing rates as o R is increased. 

Equation 7 does not give explicit functions of 
(7b) crack size at maximum loading or complete 

unloading in this case. 

2. 2. 3. Flexed surfaces 
With Equation 5b inserted into Equation 7a, 
differentiation gives 

2[Xe + Xr - -  o~(~"~)1/2c2/e*] 
6c/6P = [3KecU 2 + 4e;(TrQ)V2cp/p,] (P f ) .  



The crack initially expands at a fast rate, 6c 
c -1/2 , but begins to saturate, 6c --> 0, at 

ca  = [(Xe + xr)P*/o~(~ra)"2l ' '2 (1 t)  

as the load increases indefinitely. Equation 7a does 
not provide an explicit function of crack size at 
maximum loading, but c ~~ serves usefully as an 
upper bound. Proceeding similarly with Equation 
7b gives 

2 [Xe -- @(rr~2)'/=c2/P*] 
6c/6P = [3Kcc,/2 + 4@(M2) l /2cp /p .  ] (e$) .  

With this case the interesting possibility of a 
response 6c > 0 for 6P < 0 arises. To quantify 
this, we note that Equation 7b produces the 
same crack size function at P = 0 as for stress 
free surfaces, 

c t = (x~P*/Ke)2/a; (9) 

i.e. the ultimate equilibrium crack configuration 
is independent of any reversible flexural loading, 
even if the intermediate configurations are not. 
Then the condition 6e /6P= 0 at c = c  t deter- 
mines a critical flexural compression level above 
which the final configuration is attained via 
crack extension rather than contraction: 

( 0 ~ )  c ":4/3" 4 /3"  , - ' , x l /2 r~* l /3  (12) 
= X e A c  / X r  I ' l r , ~ )  1-" . 

Note the reduction in (@)c as the residual stress 
term ?(2 increases relative to Xe. 

Our calculations in this subsection are con- 
ditional on a state of  mechanical equilibrium 
existing throughout the entire indentation cycle. 
Even in cases where cracks are found to extend 
in an equilibrium manner, however, fracture 
environments are generally such that the same 
cracks are unable to contract spontaneously; 
a variety of mechanical and chemical agents act 
to restrain closure and healing at the fracture 
interface [8]. This general irreversibility in crack 
growth needs to be considered when applying 
the equations derived above. For instance, we have 
already pointed out the potential usefulness of 
Equation 10 in evaluating relative values of  Xe and 
Xr. This equation involves the final crack size c t , 
via Equation 9; in a proper experimental deter- 
mination we should ensure that this ultimate 
unloading configuration is approached in accord- 
ance with the condition 6c > 0. The ideal experi- 
mental arrangement would therefore appear to be 
one in which c* is determined on a stress-free 
surface, and c t on a suitably flexed surface. We 

shall see in the following section that this com- 
bination of surface stress states may be realized 
quite simply in a single indentation set-up. 

3. Fracture mechanics experiments 
3.1. Residual i nden ta t ion  stress f ie ld 
Our first experiments were aimed at testing the 
validity of the basic assumptions underlying 
Equation 3, in particular the geometrical similarity 
of  the residual indentation field. This was done 
using a standard optical birefringence technique, 
with a variable compensator attachment on a 
polarising microscope. Viewed in the crossed- 
polars setting, the field could be assessed along 
any prescribed optical path via a measurement 
of the retardation [12]; 

P = A Ao(z) dz,  (13) 

where A is the stress optical coefficient, Ao is the 
difference in principal stresses normal to the 
path, and t is the plate thickness over the path 
coordinate z. 

Preliminary observations were made to confirm 
the existence of a residual mouth-opening dis- 
placement at the median cracks. Vickers indent- 
ations on annealed soda-lime glass slabs were 
viewed parallel to both the surface and one of 
the impression diagonals (Fig. 1): optical paths 
displaced laterally about the indentation centre, 
and of depth comparable with that of  the defor- 
mation zone, were accordingly investigated. The 
retardation was not measurably affected by the 
presence of the crack su r f aces - the  median 
crack normal to the optical path remained pract- 
ically invisible in tire birefringent image. The 
sign of the retardation was such that the prin- 
cipal stress along the surface normal always 
exceeded the principal stress along the surface 
tangent. Since the former stress component 
necessarily vanishes at the free surface, we con- 
clude that the residual force on the median cracks, 
in order to accommodate the surrounding surface 
compression, must itself be tensile. 

Quantitative information was obtained by 
viewing similar indentations normal to the glass 
surface. To relate this information to the require- 
ments of geometrical similitude, namely that the 
spatial extent of  the residual field scales with the 
impression half-diagonal a (Fig. 1), and the inten- 
sity of the field likewise with the hardness H, 
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where, by definition, 

H = P*/2a ~ (14) 

for Vickers indenters, Equation 13 may be more 
conveniently rewritten in the .normalized form 

f tla 
F ~ -  (AH1/2p*l/2/21/2) [Ao(z/a)lH] d(z/a). 

~0 
(15) 

Then, if the retardation were always to be mea- 
sured at the same relative position in the residual 
field, the integral quantity in Equation 15 should 
be invariant for any given indentation system. 

Measurements of the optical retardation were 
accordingly made close to the impression sides, 
where maxima occurred, as a function of peak 
indentation load. (In this orientation, the principal 
stresses are, by symmetry, radially and tangentially 
directed.) Comparative tests were made on both 
annealed (o s = 0) and thermally tempered (a s = -- 
a R = - - 1 2 8 M P a )  glass surfaces, stress optical 
coefficient A =2 .84TPa  -1, to investigate any 
possible effects of an imposed surface stress on the 
residual indentation field. Hardness values were 
measured directly from the impressions, in accord- 
ance with Equation 12, giving H = (5.7 -+ 0.2) GPa 
(annealed) and H = (5.5 -+ 0.2) GPa (tempered). 
The results are plotted as P/AH1/2P .1/2 versusP* 
in Fig. 2. The constancy of the plot confirms the 
invariance of the integral quantity in Equation 15, 
thereby justifying the geometrical similarity 
principle for the glass studied here. Also, the fact 
that the data for annealed and tempered surfaces 
are indistinguishable within the scatter band 
demonstrates the insensitivity of the residual 
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Figure 2 Bi-refringence data for residual Vickers im- 
pressions in annealed and tempered soda-lime glass. Bars 
on data points represent experimental measurement errors. 

indentation field to extraneous forces. This last 
point is not surprising, in view of the high stress- 
concentrating power of sharp inden te r s - the  
relatively small surface stresses encountered in 
typical glass surfaces (cf. oR with H, above) are 
hardly likely to exert any significant influence 
on events within the irreversible deformation zone. 
Finally, noting that the threshold for median 
cracking was (3 + i ) N  for annealed glass and (10 + 
4) N for tempered glass, we may infer from Fig. 2 
that the intensity of the residual field (as reflected 
in the integral component of Equation 15) is not 
significantly diminished by the onset of fracture: 
i.e. the effective centre load Pr remains constant 
as the median cracks extend. We may indeed 
conclude that Xr in Equation 3 is constant for a 
given indenter-specimen system. 

3.2. Median c rack  evolution 
Observations of median crack response during the 
Vickers indentation cycle were made to investigate 
the predictions of Section 2. Two methods were 
used: 

(i) Glass laths ~ 50 mm x 6 m m x  3 mm (cut 
from glass d i s c s - see  Part 2 ) w e r e  indented 
in situ on the stage of an inverted microscope, and 
viewed from directly below the contact site in 
reflected polarized illumination. This set-up 
allowed the sideways extension of the median 
cracks to be followed directly. The indenter was 
mounted on a motor-driven double screw, which 
in turn acted against an instrumented proving ring 
to give a continuous record of the load delivered 
to the specimen [13]. The motor drive could be 
conveniently halted at any point during the 
contact for photographic purposes. A dry nitrogen 
enclosure about the specimen assembly provided 
an inert environment for equilibrium crack growth. 

(it) Similarly indented laths were broken in 
four-point bending, with the mutually orthogonal 
median cracks aligned normal and parallel to the 
tension axis. Failure initiated from the cracks in 
the normal orientation, which could then be 
examined by reflection microscopy. Crack arrest 
markings evident wherever the stress field suffered 
perturbations at halt points in the loading pro- 
vided a pictorial record of fracture development. 

Our first series of observations was taken with 
annealed laths indented on a rigid base support, 
i.e. with stress-free surfaces. Micrographs from a 
typical indentation sequence are shown in Figs. 3 
and 4. We may note the symmetry of the patterns 
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Figure 3 Median crack evolution in a stress free (o s = 0) surface of  soda-lime glass, Vickers indenter.  Axial views, at (a) 
partial load P t  = 47 N, (b) maximum load P*  = 90 N, (c) partial unload P$ = 30 N, (d) full unload P~ = 0. (Lateral 
cracks also visible as faint Newton's  ring system). Width of  field 720 ~zm. 

\ / / ' -  
d c ===================== 

MII 

Figure 4 Half-side view of  median crack shown with horizontal trace in Fig. 3 above, and half-schematic diagram 
mapping out growth fronts. Arrest positions marked correspond to (a), (b), (c), (d) in the axial views. Note absence 
of  downward extension on unloading. MII denotes (slightly inclined) median crack parallel to compression axis. L 
denotes lateral crack. Width of  half-field 650 pro. 
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in the axial views, and the one-to-one correlation 
between crack traces in these views and maximum 
widths of crack arrest markings in the half-section 
view. The family of fainter markings accom- 
panying those labelled in Fig. 4 is spurious, pre- 
sumably attributable to vibrations in the loading 
system, but nevertheless is helpful in mapping out 
the progress of the crack front, as in the accom- 
panying half schematic. The manner in which the 
configuration develops from a "contained", 
sub-surface penny flaw at full loading to a surface 
half-penny at full unloading is apparent [4]. 
However, there is no downward crack extension 
during unloading. Thus the essential prediction for 
stress-free surfaces in Section 2, that median 
cracks should grow monotonically with increasing 
load but remain stationary with decreasing load 
(no healing), appears to apply only for character- 
istic dimensions measured along or close to the 
indentation axis. We shall offer an explanation of 
this kind of behaviour in Section 4. 

The sequence of events depicted in Fig. 3 was 
observed for maximum loads in the range ~ 20 to 
150N. Outside this range some variants in the 
evolution occurred: at higher maximum loads the 
median cracks broke through to the surface prior 
to unloading [3] ; at lower maximum loads cracks 
did not even initiate until unloading commenced, 
in which case the surface half-penny geometry 
could be attained without passing through the 
contained-penny stage. However, regardless of the 
load region, the final shape was always reasonably 
close to that of the ideal half-penny. 

Similar observations using the axial viewing 
apparatus were made on thermally tempered glass 
surfaces. (The tendency for tempered glass to 
shatter in a break test did not allow for a sys- 
tematic study of section views of the median 
cracks.) Other than that the scale of the fracture 
was smaller, and higher maximum loads were 
needed to initiate the medians, the pattern of 
behaviour was as for stress-free surfaces. This is 
entirely in accord with the trends outlined for 
constant compression surfaces in Section 2. 

Finally, a series of tests was run on laths 
supported on knife edges symmetrically disposed 
about the load axis, such that an uniaxial, load- 
dependent surface compression developed during 
the indentation. The Vickers pyramid was oriented 
to produce median cracks normal and parallel to 
the compressive stress, corresponding to surface 
states % = -  o~-P/P* (Equation 5b) and os = 0 

respectively. For any prescribed load P* the peak 
compression @,  as evaluated from simple beam 
theory, could be varied by adjustment of the 
support span. Figs. 5 and 6 show a typical indent- 
ation sequence obtained with this arrangement. 
A marked asymmetry in the crack pattern is now 
evident: the crack parallel to the compression axis 
is unaffected by the flexure (cf. Fig. 3), whereas 
the crack normal to this axis is substantially in- 
hibited in its growth. The asymmetry diminishes 
as the indenter unloads, with both cracks ex- 
tending to the surface as in the stress free speci- 
men. Now, however, the crack experiencing the 
unloading compression begins to extend down- 
ward, ultimately achieving a depth somewhere 
intermediate between the values for the two 
orthogonal cracks at maximum loading. We are 
therefore close to the ideal test arrangement 
alluded to in Section 2 in connection with ex- 
tracting quantitative information on the adjustable 
indentation constants Xe and X~: the crack dimen- 
sions c~ and c~ (subscripts indicating orientation 
relative to the compression axis) appropriate to 
Equations 8 and 9 are accordingly indicated in 
the half-schematic of Fig. 6. Measurements from 
10 well-developed crack systems formed at a peak 

load P * = 9 0 N  at @ = 5 5  and l l0MPa,  two 
stress levels for which downward extension was 
observed during unloading of the minor median 
crack, gave c~ = (363 -+ 20)~m and c T = (214 -+ 
18)/lm (see Fig. 7); together with K e =(0.75-+ 
0.05) MPam 1/2 [14], Equations 8 and 9 yield 
Xe = 0.032 -+ 0.008 and Xr = 0.026 -+ 0.003 for 
soda-lime glass. 

With the indentation parameters thus deter- 
mined, and using a specially calibrated value 
~2 = 0.30 for the geometrical constant pertinent 
to orthogonal half-penny cracks in a uniform 
surface stress field (Appendix), Equation 7 may 
be used to calculate the crack depth throughout 
the entire contact cycle for any given %. Fig. 7 
compares P(c) functions computed in this way 
with experimental data from the indentation/ 
flexure test series. The basic features of crack 
response predicted for flexural surfaces in Section 
2.2 are apparent in this plot, although there is 
some systematic discrepancy in quantitative 
agreement: we may note, for instance, that some 
downward growth is observed during unloading 
at o~ = 55 MPa, which compares with the critical 
quantity (@)e = 65 MPa calculated from Equ- 
ation 12. 
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Figure 5 Median crack evolution of flexed (cry- --- 110 MPa) surface of soda-lime glass. Axial views at (a) partial load 
Pt  = 52 N, (b) maximum load P* = 90 N, (c) partial unload P$ = 35 N, (d) full unload P$ = 0. Flexural compression 
acts normal to crack with horizontal trace. (Lateral cracks again faintly visible.) Width of field 720 #m. 

MII 
Figure 6 Half-side view of median crack shown with horizontal trace in Fig. 5 above, and half-schematic diagram 
mapping out growth fronts. Arrest positions marked correspond to (a), (b), (c), (d) in the axial views. Note down- 
ward extension on unloading (obscured partially by minor chipping). MII denotes (slightly inclined) median crack 
parallel to compression axis. In this particular example, incidence of lateral crack L between stages (c) and (d) has 
prematurely obstructed downward extension. Width of half-field 650 ~zm. 
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Figure 7 Fracture mechanics plot for median cracks in 
soda-lime glass subjected to various levels of flexural 
compression during indentation. Curves represent pre- 
dictions of Equation 7, in conjunction with Equation 5b, 
using calibrated indentation constants (broken curves 
correspond to crack healing). Data points represent 
crack depth measurements from profile views. Each 
symbol represents different crack, with open symbols 
denoting loading half-cycle, closed symbols denoting 
unloading half-cycle. 

At the conclusion of  each indentation cycle i t  
was noted that the t'mal crack configuration 
could be maintained for more than 30 min in the 
dry nitrogen enclosure without significant expan- 
sion. However, immediately on opening the 
system to laboratory atmosphere, the cracks 
exhibited further, time dependent growth. The 
extent of  this growth, as observed in the inverted 
microscope setup, was not inconsiderable, demon- 
strating the intensity of  the residual field. Typi-  
cally, after a 30 min exposure to air, the cracks 
had extended from 363 pm to 440/~m.* 

4 .  D i s c u s s i o n  
Our analysis of  the contribution of  residual 
elastic-plastic stresses to the driving force for 
median fracture in sharp contact derives from a 

simple scaling argument, backed up by stress 
bi-refringence measurements. As mentioned in 
Section 2, the similarity o f  Equations 2 and 3 
makes it difficult to resolve the effects of  this 
contribution in any straightforward measurement 
o f  crack size as a function of  indentation load: 
certain surface stress configurations must be 
contrived to demonstrate the existence of  the 
residual term in a positive, quantitative manner. 
Nevertheless, such a term has important impli- 
cations in the analysis of  strength properties, 
under conditions of  both equilibrium and kinetic 
fracture [7].  Part 2 o f  this study will explore 
these implications in some depth. 

Any treatment based on scaling principles 
suffers in its inability to determine proportion- 
ality constants, in this case the X terms. In the 
absence of  a detailed formulation of  median 
fracture mechanics in a well defined elastic- 
plastic stress field, we simply regard Xe and • as 
adjustable parameters to be obtained empirically. 
Moreover, implicit in the derivations of  Equations 
2 and 3 is the assumption that the field which 

drives the cracks is radially symmetrical, whereas 
the observations described in Section 3.2 show 
clear evidence for a strong angular dependence in 
the fracture evolution; the relations derived in 
Section 2 are considered to apply only to the 
crack coordinate along the load axis. Some insight 
into the origin o f  this asymmetry may be gained 
by considering the nature o f  the long-range con- 
tact field through which the median cracks ulti- 
mately propagate, as represented by the Boussinesq 
point-load elasticity solution [3]. Fig. 8 shows 
that the distribution o f  the principal stress normal 
to the crack plane is indeed strongly angular 
dependent, but that one can subdivide this stress 
into symmetrical and asymmetrical components. 
The symmetrical component is tensile, and ac- 
cordingly provides the elastic driving force implicit 
in the penny crack relation Equation 2. The 
asymmetrical component is compressive and 
surface c o n f i n e d -  with the stress intensity in 
proportion to the contact load, this component 
acts in a manner somewhat analogous to that of  
a superposed compressive flexure field, thereby 
accounting for the inhibited expansion of  the 
surface crack. 

*Previous calibrations of the indentation constant x(= Xe + • for strength degradation analyses (e.g. see [6, 11] in 
Part 2 of this study) were carried out after exposures of such duration, and therefore do not correspond to strict 
equilibrium conditions. 
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Figure 8 Polar plot of principal stresses normal to median 
plane in point-contact elastic field (a), showing sub- 
division into symmetrical (b) and asymmetrical (c) 
components. 

There are also a number of  other assumptions 
in the residual stress analysis which might be 
expected to contr ibute to discrepancies between 
theoretical predict ion and observed behaviour; 
e.g. that  negligible reversible plasticity occurs 
during indenter  unloading and that  the residual 
force term P~ remains constant during crack 
formation ("dead weight" crack loading). In 
addit ion,  factors such as indenter geometry,  and 
material inhomogeneity and anisotropy,  would 
need to be considered in any complete t reatment  
of  the problem. The present simpfistic formulat ion 
nevertheless serves usefully in accounting for the 
general features of  crack evolution in sharp in- 
denter fields, and, provided the adjustable indent- 
ation constants are calibrated under condit ions 
appropriate to in-service environments, in estab- 
lishing a basis for the predict ion o f  contact-related 
fracture processes. 

Appendix 
The stress intensity factor for cracks o f  character- 
istic size c in a uniform tensile field o is given by  

g = o ( T r ~ ~ c )  1/2 , (A1) 

i.e. of  the same form as Equation 4. For an ideal 
full penny crack in an infinite medium the geo- 
metry  term g2 is 4 # ?  [8].  However, for the more 
complex configuration of  Fig. 1 in which two 

mutually orthogonal half-penny cracks intersect 
the boundary of  a semi-infinite medium along 
their diameters, f2 must be modified by free 
surface effects. In the absence of  a theoretical  

fracture mechanics analysis of  this configuration f2 

is best determined by empirical calibration. 

Some experimental  strength data, taken on the 
same glass as used here, suffice for this purpose 
[15].  Test pieces in the form of  discs nominally 
5 0 m m  in diameter and 3 mm in thickness were 
indented with a Vickers pyramid in the manner 
described in the text.  The discs were then annealed 
to remove all traces of  the residual stress field 
about the indentat ion (as verified by  birefringence 
measurements).  In case the annealing had blunted 
the crack tips the discs were then stressed sub- 
critically in biaxial flexure in a moist environment,  
indented face on the tension side, until some slow 
crack growth was observed. The test environment 
was then changed to dry nitrogen, the surface 
traces of  the median cracks measured, and the 
discs taken to failure. Results for 20 such tests in 
the strength range 35 to 70 MPa gave 

oc 1/2 = (0.77 +- 0.05) MPa m 1/2 = Kc/(~rg2) 1/2. 

(A2) 

With Kc = (0.75 -+ 0.05)MPa m '/2, Equations A1 
and A2 combine to give ~2 = 0.30 + 0.08. 
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